
N88-17212
Simplifying the Construction of

Domain-Specific Automatic Programming Systems:
The NASA Automated Software Development

Workstation Project

Bradley P. Allen
Peter L. Holtzman

Inference Corporation
5300 W. Century Blvd.
Los Angeles, CA 90045

Abstract

W e provide a n overview of the Automated Software
Development Workstation Project, an effort to explore
knowledge-based approaches to increasing software
productivity. The project, focuses on applying the
concept of domain-specific automatic programming
systems (D-SAF'Ss) to application domains at NASA's
Johnson Space Center. We describe a version of a D-
S A P S developed in the Phase I of the project for the
domain of Space Station momentum management, and
discuss how problems encountered during its
implementation have led us to concentrate our efforts on
simplifying the process of building and extending such
systems. We propose to d o this by attacking three
observed bottlenecks in the D-SAPS development process
through the increased automation of the acquisition of
programming knowledge and the use of an object-
oriented development methodology at all stages of
program design. We discuss how these ideas are being
implemented in the Bauhaus, a prototype CASE
workstation for D-SAPS development.

1. Increasing software productivity

through domain-specific automatic
programming

Software development has come under criticism as an

increasingly serious bottleneck in the construction of

complex automated systems. Increasing the reuse of

software designs and components has been viewed as an

important way t o address this problem, possibly

increasing productivity by a n order of magnitude or

more 19). A promising approach to achieving software

reusability is through domain-specif ic autonzutic

programming.

Domain-specific automatic programming systems (D-

SAPS) use application domain knowledge to automate

the refinement of a program description (written in a

high-level domain language) into compilable code

(written in a procedural target language) [I]. D-SAF'Ss

can be distinguished from the more traditional domain-

independent automatic programming systems in t h a t the

specification of the program is in a domain-specific

language accessible to a n end user, rather than a formal

specification language (e.g. the predicate calculus with

equality). Application generators of the type used in

business report generation (e.g. Focus and DBASE-11) are

examples of D-SAF'Ss in which the refinement process is

completely automatic and implemented procedurally

[IO]. More complex domains can be handled if the user

is allowed to interact with and guide the refinement

process. Prototype knowledge-based systems that

support user interaction and which work for practical

application domains have been successfully developed

(e.g. Draco [lS], @NIX [3], and KBEmacs [25]).

2. The Automated Software Development
Workstation Project

Since the fall of 1985, Inference Corporation has been

involved in an effort, sponsored by NASA's Lyndon

B. Johnson Space Center, to explore the applicability of

domain-specific automatic programming to NASA

software development efforts. Phase I of t h r project

focused on the development of a D-SAPS for the domain

39

' o f Space Station momentum management [IS]. During the D-SAPS development process tha t lead to these

Phase I, A prototype D - S M S was constrUCtetJ, observations.

comprised of:
3. Addressing the bottlenecks in D-SAPS

0 a components catalog of FORTRAN
subroutines used in the construction of Space
Station orbital simulations;

a design catalog of programs implemented
using the system;

a interactive graphical design system using a
dataflow specification language for design
editing and components composition;

code generators for component interfaces,
numerical subroutines and main programs;
and

a rule-based expert that:

o proposed refinements for
unimplemented modules in the dataflow
specification;

o flagged inconsistencies at manually-
specified component interfaces; and

o suggested possible workarounds to

development
W e have focused on three bottlenecks in the D-SAPS

development process that were observed during the

development of the Phase I system:

0 developing a domain language;

0 describing design refinements and constraints;
and

describing the generation of target language
code from a sufficiently detailed program
description.

We plan to reduce the effort spent on each of these tasks

by:

0 automating the programming knowledge
acquisition process; and

using an object-oriented development
methodology at all stages of the program
design process.

We are currently implementing a knowledge-based D-

S A P S development workstation, called the Bauhaus, t h a t

'I patch
system conversion routines).

inconsistencies (e.g . coordinate

The system was implemented by hand, to serve as a

model for the implementation of similar D-SAPS for

other NASA domains. The functionality and

performance of the prototype was adequate to

demonstrate the applicability of the D-SAPS approach

to software development a t NASA JSC. However,

reflecting on our experience in building this system led

lis to be i n accord with other D-SAPS developers i n

noting that :

0 "domain analysis and design is very hard"
[16]; and

0 "domain-specific systems can be quite useful
within their range of application, but the
range is often quite narrow" [2].

We feel that, these two issues must be addressed if D-

S A P S s are to play a significant role in future software

development environments. Therefore, in Phase I1 of the

project, we are attempting to address the bottlenecks in

will embody these two approaches. We now describe how

the design of the Bauhaus addresses the perceived

bottlenecks.

3.1. Automating the programming knowledge

acquisition process

By structuring the design process so tha t the types of

knowledge required are made explicit, the knowledge

acquisition process can be made simpler [14], and the

resulting knowledge base easier to maintain [20]. To this

end we are using a problem solving architecture based

tha t of the RIME [24] and SOAR [12] systems,

implemented using the ART expert system building tool

[I l l . This architecture allows us to organize design

knowledge into a hierarchy of problem spaces,

representing program design tasks. Each problem space

consists of a set of operators for performing the task

40

represented by the space. In the Bauhaus, a problem

space is associated with each program description that

the system has in its knowledge base; the task

represented by the problem space is that of refining the

program description until i t is sufficiently detailed to

allow a code generator to translate i t into code in the

target language. The design process in the Bauhaus

occurs in the following way:

Select the initial design problem: the
user copies and edits an initial program
description from the set of program
descriptions in the knowledge base using a
structure editor, making i t the cw9.ent
description. The initial problem space is
that associated with refining this description.

Propose operators: the Bauhaus
determines what operators are applicable to
the current description.

Choose an operator: the Bauhaus chooses
an operator from the proposed set using
operator preferences and constraints
associated with the problem space, and
implemented as ART production rules. User
interaction is requested when the system
reaches an impasse, where either no operator
is known to apply, the system is unable to
derive a preference for a specific operator, or
the system’s preferences are inconsistent [12].
This interaction takes one of two forms:

0 the user chooses a proposed operator
for the system to apply; or

0 the user edits the current program
description, in which case we return to
step 2.

4. Apply the chosen operator: the Bauhaus
applies the chosen operator to the current
description. The operator may:

0 select a new problem space,

0 recurse into a problem subspace,

0 refine the current description,

0 signal that the task for the problem
space is complete, or

0 sigiial that the task cannot be siiccessful
coni p I e t e d .

We then return to step 2.

The design process terminates when the top-level task of

refining the initial program description is successfully

completed. This occurs when the description is detailed

enough to allow the generation of target language code

to occur. Given this problem s0lvii.g architecture, we

now discuss the knowledge acquisition mechanisms used

to obtain the descriptions, operators, operators

preferences and constraints used in the design process.

3.1.1. Acquiring descriptions

Our representation of domain objects and operations

uses a description language, implemented in ART

schemata, that is similar to KRYPTON 1171. New

descriptions of domain objects and operations are

created from existing descriptions using the copy&edit

technique espoused by Lenat in the CYC system,

[13] and are placed in the appropriate location in a

subsumption hierarchy through an automatic classifier

This use of description copy&edit together with

automatic classification reduces the effort required to

extend the domain language used to describe systems, by

fostering reuse of existing domain languages in the

creation of new domain languages. Using a subsumption

hierarchy of descriptions as the organizing framework for

the representation of objects and operations supports

user access for copy&edit actions through a retrieval-by-
reformulation browser similar in design to ARGON [IS].

Retrieval-by-reforinidation will permit a naive user of

the Bauhaus to find a description needed for a

[8].

copycedit action inore easily than using a tradition

query mechanism [‘33].

3.1.2. Acquiring operators, operator preferences,

and constraints

M h n the user perform a manual edit of a description

in response to ail impasse, the Bauhaus will create an

operalor whose condition is the current description and

whose action is the manual editing action. Operator

preferences are acquired by recording the conditions

under which a user makes a selection from a set of

41

operators during an impasse where n o operator is

preferred. Constraints are acquired when a user

manually rejects the application of a n operator, causing

the Bauhaus to backtrack to the previous problem

solving state. This type of knowledge acquisition

through the observation of manual programming steps

taken by the user can be characterized as a l e a r n i n g

a p p r e n t i c e approach [15]. In this respect, the Bauhaus is

similar to the VEXED VLSI design system [22].

3.2. Using an object-oriented development

methodology

By using object-oriented design (OOD) [SI, we can

decrease t h e level of effort required to implement a code

generator tha t takes a sufficiently detailed program

description and produces compilable target language

code. This is due to the natural correspondence between

the world and its model in an object-oriented framework
In the Bauhaus, the world is the set of target

language software components and code templates and

the model is the set of descriptions of objects and

sequences of operations in a n application program.

Ada's language level support of abstract da ta types and

the existence of commercially supported reusable

software component libraries constructed using OOD

principles [6] make it our first choice as a target

language in the Bauhaus system. The mapping between

thc description of a n program and its realization in Ada

code and the generation of the main subprogram in

which the program objects are scoped is straightforward.

We believe t h a t the Bauhaus could easily be extended to

support other languages with similar OOD features as

target languages (e.g. Smalltalk, Objective-C, or ART).

[7].

4. System status and limitations
Implementation of the Bauhaus is currently underway

using ART running on a Symbolics Lisp machine under

the Genera 7.1 environment. Support for Ada

compilation and library management is provided by the

Symbolics Ada programming environment. AS of July
I

1987, ART-based representations for descriptions,

operators, operator preferences and constraints have

been designed, the problem solving architecture and

basic knowledge acquisition algorithms have been

designed and implemented, and the target language

reusable components library has been selected. The user

interface is currently under construction, and the

domain analysis for the demonstration domain, orbital

flight simulation, is underway. We plan to demonstrate

the use of the Bauhaus in the construction of a D-SAPS

for this domain in the first quarter of 1988.

In the current design of the Bauhaus, there are a

number of issues relevant to D-SAF'Ss that we do not

address:

Lifecycle issues: the Bauhaus is only useful
as a programming-in-t he-small environment,
and ignores programming-in-the-large issues
(e.g. version control). These would have to be
addressed in a production-quality system.

Persistent object bases: the Bauhaus has
no provision for saving session s ta te in a
more sophisticated manner than simply
saving changes out to a text file. W e are
looking to work on object-oriented databases
to provide an answer here [4].

Automated algorithm synthesis: the
Bauhaus will always reach a n impasse if a
programming task requires algorithm design.
However, the architecture should be
extensible to encompass this kind of problem
solving (e.g., see the work by Steier on the
Cypress-Soar and Designer-Soar algorithm
design systems 121)).

5. Conclusion
There is evidence tha t domain-specific automatic

programming is a viable approach to increasing software

productivity. To make this approach a practical one,

the task of building and extending D-SAPS must be

made simpler. As described above, we plan to

accomplish this by improving the knowledge acquisition

and software engineering methodologies used in

constructing D-SAPS. Our ultimate goal is a production-

42

quality system that could be described ils an

"application generator generator"; i.e., a knowledge-

based environment for the construction of special-

purpose systems for the generation of applications

software by end-users. Such a system could be available

to systems analysts and designers i n a DP/MIS

organization for use when an applications programming

task occurs frequently enough to merit the creation of a

D-SAPS.

References

1. Barstow, D.
Programming".
Engineen'ng 11,

2. Barstow, D.

"Domain-Specific Automatic
IEEE Transactions on Software
11 (November 1985).

Artificial Intelligence and Software -
Engineering. Proceedings of the 9th International
Conference on Software Engineering, IEEE, March-April,
1987.

3. Barstow, D., Duffey, R., Smoliar, S., and Vestal, S.
An overview of @NIX. Proceedings of the Second
National Conference on Artificial Intelligence, AAAI,
August, 1982.

4. Bernstein, P.A. Database System Support for
Software Engineering. Proceedings of the 9th
International Conference on Software Engineering, IEEE,
March-April, 1987.

5. Booch, G. "Object-Oriknted Development". IEEE
Transactions on Software Engineering 12, 2 (February
1986).

6. Booch, G . Software Components With Ada.
Benjamin/Cummings Publishing, 1987.

7. Bordiga, A., Greenspan, S., and Mylopoulos, J.
"Knowledge Representation as the Basis for
Requirements Specification". Computer 18, 4 (April
1985).

8. Brachman, R.J. and Levesque, H.J. The Tractability
of Subsumption in Frame-Based Description Languages.
Proceedings of the National Conference on Artificial
Intelligence, AAAI, August, 1984.

9. Horowitz, E. and Munson, J.B. I1.4n Expansive View
of Reusable Software". IEEE Transactions on Soft,waYe
Engineeiing 10, 5 (September 1984).

10. Horowitz, E., Kemper, A., and Narasimhan, B.
Application Generators: Ideas for Programming
Language Extensions. Proceedings of ACM'84 Annual
Conference: The Fifth Generation Challenge, ACM,
October, 1984.

11. Inference Corporation. ART 3.0 Reference Manual.
Inference Corporation, 1987.

12. Laird, J.E., Newell, A. and Rosenbloom, P.S.
" S O A R : An Architecture for General Intelligence".
.4rtificial Intelligence 33, 1 (1987).

13. Lenat, D.B., Prakash, M., and Shepherd, M.
"CYC: Using Common Sense Knowledge To Overcome
Brittleness and Knowledge Acquisition Bottlenecks". A I
Magazine 6, 4 (Winter 1986).

14. Marcus, S., McDermott, J., and Wang, T.
Knowledge Acquisition for Constructive Systems.
Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, August, 1985.

15. Mitchell, T.M., Mahadevan, S., and Steinberg, L.I.
LEAP: A Learning Apprentice for VLSI Design.
Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, August, 1985.

16. Neighbors, J.M. "The Draco Approach to
Constructing Software from Reusable Components".
IEEE Transactions on Software Engineering 10, 5
(September 1984).

17. Patel-Schneider, P.F. Small can be Beautiful in
Knowledge Representation. Proceedings of the IEEE
Workshop on Principles of Knowledge-Based Systems,
December, 1984.
18. Patel-Schneider, P.F., Brachman, R.J., and
Levesque, H.J. ARGON: Knowledge Representation
meets Information Retrieval. Proceedings of the First
Conference on Applications of Artificial Intelligence,
IEEE, December, 1984.

19. Prouty, D.A. and Klahr, P. Automated Software
Developnient Workstation. Proceedings of the
Conference on AI for Space Applications, NASA,
November, 1986.

20. Soloway, E., Bachant, J. and Jensen, K. Assessing
the Maintainability of XCON-in-RIME: Coping with the
Problems of a VERY Large Rule Base. Proceedings of
the National Conference on Artificial Intelligence, M I ,
July, 1987.

21. Steier, D.M., Laird, J.E., Newell, A., Rosenbloom,
P.S., Flynn, R.A., Golding, A., Polk, T.A., Shivers,
O.G., 'I Jnruh, A. and Yost, G.R. Varieties of Learning in
Soar: 1087. Proceedings of the Fourth International
Workshop on Machine Learning, June, 1987.

22. Steinberg, L.I. Design as Refinement Plus
Constraint Propagation: The VEXED Experience.
Proceedings of the National Conference on Artificial
Intelligence, AAAI, July, 1987.

43

23. Tou, F.N., Williams, M.D., Fikes, R., Henderson,
A., and Malone, T. RABBIT: An Intelligent Database
Assistant. Proceedings of the Second National
Conference on Artificial Intelligence, AAAI, August,
1982.

24. van de Brug, A., Bachant, J. and McDermott, J.
“The Taming of R l ” . IEEE Expert 1, 3 (Fall 1986).

25. Waters, R.C. “The Programmer’s Apprentice: A
Session with Kl3Emacs”. IEEE Transactions on
Soltware Engineering If, 11 (November 1985).

44

